Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A stacked pyrazolo[3,4-d]pyrimidinebased flexible molecule: the effect of a bulky benzyl group on intermolecular stacking in comparison with methyl and ethyl groups ${ }^{1}$

Kamlakar Avasthi, ${ }^{\text {a }}$ Ashish Tewari, ${ }^{\text {a }}$ Diwan S. Rawat, ${ }^{\text {a }}$ Ashoke Sharon ${ }^{\text {b }}$ and Prakas R. Maulik ${ }^{\text {b }}$

${ }^{\text {a }}$ Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226001 , India, and ${ }^{\mathbf{b}}$ Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow 226 001, India
Correspondence e-mail: maulik_prakas@yahoo.com

Received 7 May 2002
Accepted 8 July 2002
Online 20 July 2002

In the crystal structure of 1,1'-(1,3-propanediyl)bis(5-benzyl-6-methylsulfanyl-4,5-dihydro-1 H -pyrazolo[3,4- d]pyrimidin-4one), $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$, the pairs of pyrazolo[3,4-d]pyrimidine rings stack as a result of intramolecular $\pi-\pi$ interactions between the heterocyclic rings. The folded molecules are further stacked in pairs, due to intermolecular aromatic $\pi-\pi$ interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Interactions between aromatic units play a significant role in chemistry (Muller-Dethlefs \& Hobza, 2000; Hunter et al., 2001; Tsuzuki et al., 2002), crystal engineering (Desiraju, 1995) and biology. In recent years, we have reported the convenient syntheses (Avasthi et al., 1995, 1998; Avasthi, Rawat et al., 2001) and the X-ray structures (Biswas et al., 1995; Maulik et al., 1998, 2000; Avasthi, Rawat et al., 2001; Avasthi, Aswal \& Maulik, 2001) of several novel 'propylene-linker' compounds based on the pyrazolo[3,4-d]pyrimidine core, which is isomeric with biologically important purine, as flexible new models for studying aromatic $\pi-\pi$ interactions (APPI). Two of these compounds, viz. 1,1'-(1,3-propanediyl)bis(5-methyl-6-methyl-thio-4,5-dihydro-1 H-pyrazolo[3,4- d]pyrimidin-4-one), (I), and 1,1'-(1,3-propanediyl)bis(5-ethyl-6-methylthio-dihydro- 1 H -pyrazolo[3,4-d]pyrimidin-4-one), (II), show inter- and intramolecular stacking due to APPI (Maulik et al., 1998; Avasthi, Aswal \& Maulik, 2001) when studied using X-ray crystallography. Since the X-ray structures of (I) and (II) are quite similar in having a U-motif for the demonstration of inter- and intramolecular stacking, it was considered worthwhile to replace the N-methyl/ethyl group of (I) and (II) with a bulky

[^0]N-benzyl group, to determine the robustness of the U-motif and its consequence for the intermolecular stacking from a crystal engineering point of view. In this communication, we report the X-ray structure of 1,1'-(1,3-propanediyl)bis(5-benzyl-6-methylsulfanyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyri-midin-4-one), (III), the synthesis of which was described previously by Avasthi et al. (1998).

(I) $R=\mathrm{Mc}$
(II) $R=\mathrm{Et}$
(III) $R=\mathrm{CH}_{2} \mathrm{Ph}$

The molecular structure and conformation of (III) are shown in Fig. 1. The structure is folded at the centre of the bridge [$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12114.0(2)^{\circ}$] due to an intramolecular APPI between the pyrazolo[3,4- d]pyrimidine rings. For comparison, the folding angles in (I) and (II) are 115.2 (2) and $114.9(2)^{\circ}$, respectively. In compound (III), as in (I) and (II), the folded pyrazolo[3,4-d]pyrimidine rings are positioned in

Figure 1
A displacement ellipsoid plot (30\% probability), showing the molecular structure of (III) and the atom-labelling scheme.

Figure 2
A crystal-packing diagram for (III), showing the intra- and intermolecular $\pi-\pi$ stacking between the pyrazolo[3,4- d]pyrimidine rings and the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (dashed lines).
such a way that the pyrimidinyl rings overlap only partially. The overlapping six-membered rings are separated by an average distance of 3.428 (3) $\AA[c f .3 .37$ (1) \AA in (I) and 3.415 (3) \AA in (II)], thus confirming the presence of intramolecular APPI.

The pyrazolo[3,4-d]pyrimidine rings in (III) are nearly planar [maximum deviation $=-0.048(2) \AA$] and the angle between the least-squares planes is $14.5(1)^{\circ}\left[c f .12 .4(5)^{\circ}\right.$ in (I) and 12.5 (1) ${ }^{\circ}$ in (II)]. The crystal packing (Fig. 2) shows further independent intermolecular stacking between the pyrazolo[3,4-d]pyrimidine systems due to $\pi-\pi$ interactions. Pairs of pyrazolo[3,4- d]pyrimidine rings [related by symmetry code $(1-x, 1-y,-z)$] overlap, with an interplanar separation of 3.370 (2) \AA in a 'parallel-displaced' orientation [the dihedral angle of a stacking pair is $1.0(1)^{\circ}$].

Interestingly, these stacked pyrazolo[3,4- d]pyrimidine rings are also connected by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 1; Desiraju \& Steiner, 1999). Thus, the combination of intra- and intermolecular APPI and intermolecular hydrogen bonding results in the formation of a stacked dimeric unit of (III). The continuous intermolecular stacking present in (I) and (II) is absent in (III). The crystal structure of (III) is stabilized mainly by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding, $\pi-\pi$ interactions and van der Waals forces.

Experimental

Compound (III) was synthesized according to the method of Avasthi et al. (1998). Diffraction-quality crystals were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=584.71$
Triclinic, $P \overline{1}$
$a=9.150$ (1) A
$b=9.491$ (1) \AA
$c=16.839$ (2) \AA
$\alpha=83.01$ (1) ${ }^{\circ}$
$\beta=85.26(1)^{\circ}$
$\gamma=76.39(1)^{\circ}$
$V=1408.5(3) \AA^{3}$

Data collection

Bruker $P 4$ diffractometer
$\theta / 2 \theta$ scans
6623 measured reflections
5527 independent reflections
3716 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=26^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.379 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 38 \\
& \quad \text { reflections } \\
& \theta=4.8-12.5^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Rectangular, colourless } \\
& 0.35 \times 0.28 \times 0.25 \mathrm{~mm} \\
& \\
& h=-1 \rightarrow 11 \\
& k=-11 \rightarrow 11 \\
& l=-20 \rightarrow 20 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 22^{\mathrm{i}}$	0.97	2.47	$3.367(3)$	154

Symmetry code: (i) $1-x, 1-y,-z$.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0470 P)^{2}\right. \\
& \quad+0.5548 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.121$
$S=1.01$
5527 reflections
372 parameters

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

AT thanks CSIR, India, for a Research Associateship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: VJ1169). Services for accessing these data are described at the back of the journal.

References

Avasthi, K., Aswal, S. \& Maulik, P. R. (2001). Acta Cryst. C57, 1324-1325.
Avasthi, K., Chandra, T. \& Bhakuni, D. S. (1995). Indian J. Chem. Sect. B, 34, 944-949.
Avasthi, K., Rawat, D. S., Chandra, T. \& Bhakuni, D. S. (1998). Indian J. Chem. Sect. B, 37, 754-759.
Avasthi, K., Rawat, D. S., Maulik, P. R., Srkhel, S., Broder, C. K. \& Howard, J. A. K. (2001). Tetrahedron Lett. 42, 7115-7117.

Biswas, G., Chandra, T., Avasthi, K. \& Maulik, P. R. (1995). Acta Cryst. C51, 2453-2455.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Maulik, P. R., Avasthi, K., Biswas, G., Biswas, S., Rawat, D. S., Sarkhel, S., Chandra, T. \& Bhakuni, D. S. (1998). Acta Cryst. C54, 275-277.
Maulik, P. R., Avasthi, K., Sarkhel, S., Chandra, T., Rawat, D. S., Logsdon, B. \& Jacobson, R. A. (2000). Acta Cryst. C56, 1361-1363.
Muller-Dethlefs, K. \& Hobza, P. (2000). Chem. Rev. 100, 143-167.
Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. \& Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104-112.

[^0]: ${ }^{\mathbf{1}}$ CDRI communication No. 5867.

